@font-face { font-family:'Barlow', sans-serif; src:url("'Barlow', sans-serif\\static\\'Barlow', sans-serif-Bold.ttf"); }
 
Sample information : Sander_lucioperca



Estimated number of cells
The total number of barcodes identified as cells.
Median UMI counts per cell
Among barcodes identified as cells, the median number of UMI per cell.
Median genes per cell
The median number of genes per cell.
Mean reads per cell
The mean number of reads per cell.
156

Estimated number of cell

30,485

Median UMI counts per cell

3,318

Median genes per cell

87,124

Mean reads per cell

Beads to cells


(left) Beads to cells plot
In library, different mRNAs from the same cell will carry the same cell barcode and random unique molecular identifiers (UMIs). However, some mRNA from dead cells mixed in reflection system was inevitability. This graph shows the distribution of UMI counts in each barcode. Barcodes can be determined to be cell-associated based on their UMI counts or by their expression profiles. Therefore, the graph contains both cell-associated (Colored Regions) and background-associated barcodes (Gray Regions).
(right) Histogram
Histograms of number of beads per droplet.
Summary


Estimated number of cells
The total number of barcodes identified as cells.
Mean reads per cell
The mean number of reads detected per cell.
Mean UMI counts per cell
The average number of UMI counts per cell. This item refers the average abundance of expression in each cell.
Median UMI counts per cell
The median number of UMI counts per cell.
Total genes detected
The total number of genes detected.
Mean genes per cell
The mean number of genes detected per cell. This item refers the activity of gene expression in each cell.
Median genes per cell
The median number of genes detected per cell.
Sequencing saturation
The fraction of UMI originating from an already-observed UMI.
Fraction reads in cells
The fraction of uniquely-mapped-to-transcriptome reads with cell-associated barcode.
Plot
The distribution of nFeature and nCount in violin.
Sample name
Sander_lucioperca
Species
Sander_lucioperca
Estimated number of cells
156
Mean reads per cell
87,124
Mean UMI count per cell
34,729
Median UMI counts per cell
30,485
Total genes detected
17,285
Mean genes per cell
3,335
Median genes per cell
3,318
Fraction reads in cells
97.1%
Sequencing saturation
43.55%
Sequencing


Number of reads
Number of raw off-machine reads obtained by this sequencing program.
Reads pass QC
Number of reads after quality control (QC) that can be used for downstream analysis. QC includes filtering low quality reads and invalid barcodes.
Reads with exactly matched barcodes
Number of reads with barcodes that match the barcode whitelist before correction.
Reads with failed barcodes
Number of reads with invalid barcodes that fail to match the barcode whitelist.
Reads filtered on low quality
Number of reads in low quality. The QC will filter the average base quality < Q20 or 2 bases < Q10 in the first 15 bases.
Q30 bases in cell barcode
Fraction of cell barcode bases with Q-score ≥ 30.
Q30 bases in UMI
Fraction of UMI bases with Q-score ≥ 30.
Q30 bases in reads
Fraction of RNA read bases with Q-score ≥ 30.
mRNA
Number of reads
17,788,886
Reads pass QC
96.45%
Reads with exactly matched barcodes
100.0%
Reads with failed barcodes
0.0%
Reads filtered on low quality
0.0%
Q30 bases in cell barcode
87.85%
Q30 bases in UMI
87.96%
Q30 bases in reads
94.25%
Droplet index
Number of reads
218,724,924
Reads pass QC
96.18%
Reads with exactly matched barcodes
90.21%
Reads with failed barcodes
3.26%
Reads filtered on low quality
0.56%
Q30 bases in cell barcode
95.89%
Q30 bases in reads
96.75%
Mapping & Annotation


Reads pass QC
Number of reads after quality control (QC) that can be used for downstream analysis. QC includes filtering low quality reads and invalid barcodes.
Reads mapped to genome
Fraction of reads that mapped to the genome.
Plus strand
The number of reads in plus strand.
Minus strand
The number of reads in minus strand.
Mitochondria ratio
The fraction of reads mapped to mitochondria.
Mapping quality corrected reads
The number of reads that align to a single exonic locus but also align to 1 or more non-exonic loci.
Reads mapped to exonic regionse
Fraction of reads that mapped to an exonic region of genome.
Reads mapped to intronic regions
Fraction of reads that mapped to an intronic region of genome.
Reads mapped antisense to gene
Fraction of reads mapped to transcriptome, but on the opposite strand of their annotated gene. This part of reads will be filtered out cause them are opposite to theoretical direction.
Reads mapped to intergenic regions
Fraction of reads that mapped to intergenic regions of genome.
Reads pass QC
17,156,772
Reads mapped to genome
85.69%
Plus strand
59.35%
Minus strand
40.65%
Mitochondria ratio
0.00%
Mapping quality corrected reads
0.13%
Reads mapped to exonic regions
69.8%
Reads mapped to intronic regions
3.5%
Reads mapped antisense to gene
4.1%
Reads mapped to intergenic regions
26.6%
Include introns
True
Cluster


Left
The figure is automated clustering each cell-barcode by UMAP algorithm. The cells clustered into the same group have similar expression profiles. Each dot represents a cell, and is colored according to different cluster.
Right
This plot shows that the total UMI counts for each cell-barcode. Two-dimensional horizontal and vertical coordinates of each dot are obtained using the uniform manifold approximation and projection (UMAP) algorithm. Each dot represents a cell and is colored according to UMI counts. Cells with greater UMI counts likely have higher RNA content than cells with fewer ones.
Marker


Table
The table shows the top 30 differentially expressed genes for each cluster. Here a differential expression test was performed between each cluster and the rest of the sample for each gene. The p-value is a measure of the statistical significance of the expression difference, the smaller the P value, the closer to the theoretical value. Avg_log2FC is log fold-chage of the average expression between the markers for every cluster compared to all remaining cells.
gene cluster p_val_adj p_val avg_log2FC pct.1 pct.2
piezo100.0597334823967415950.00126905961519653423.6950.40.078
LOC11604115100.08357688487483420.00200806637794139633.680.3860.078
pros100.010670632435248760.000107167970996781433.5040.4860.098
si:dkey-117m1.400.041067800337709950.000717036686984123.1930.4430.118
LOC11604013100.0131750668557504310.000143011669313639523.0410.50.118
sdk2b00.037169242272342360.0005972807781711382.9640.4860.176
galnt200.0575787109780771040.00120103924320772682.890.4430.137
hook300.059404520628017720.00125748135445587562.7470.4710.196
LOC11604004500.0071302247798670475.673772808454155e-052.6850.5430.157
sdc300.0046888709433271253.2964095785133526e-052.6820.60.196
LOC11603801200.09657060249021340.00249931642724208042.6130.3860.059
pamr100.0073651154423326516.202082688614485e-052.5870.6290.314
txnipa00.0218172620637796070.00026968185492929062.5780.5430.235
pbxip1b00.00323094127829944052.146638982800926e-052.5220.6710.392
lum00.0046333808646653123.221602887978045e-052.5210.6570.333
clu00.0075604462251928796.483386364310952e-052.5110.60.275
tbc1d2300.091524289751443650.00229093555929138932.4580.4570.196
LOC11603802000.0260966659580330120.000347302788661441452.4460.5570.275
plxna200.092282121675915730.0023312927833764252.4010.4430.137
midn00.0386440738649558860.00063292209976596492.3810.5140.196
si:ch1073-513e17.100.085543911463481530.00206193606123348562.3180.4860.216
macf1a00.00071236789517552762.9884756236342354e-062.2920.7430.451
LOC11603778000.032626780695914590.00049151902315384312.2870.5710.353
smad700.06336988539279110.0013903775843288532.2840.5140.255
LOC11603515100.0565423586935431540.00115758073654117252.2480.50.216
LOC11603885400.032626780695914590.00049151902315384312.210.5710.333
dst00.049044033923686240.0009434459554231982.2060.5430.294
lamp1a00.0092830850461783638.534356616928501e-052.1840.6140.275
LOC11605134800.03866633987704120.00064523558509277652.1670.5710.333
LOC11849529600.06336988539279110.0013903775843288532.1640.5290.255
LOC11606590602.6728674914835555e-053.7216221071954266e-082.150.8430.627
col1a1b03.894302305976204e-056.618869803111595e-082.1430.9430.824
nars100.065166418629126410.00145496716500444472.0740.50.235
LOC11604674500.041601613044094460.0007520687154139452.0360.4860.137
ccdc8000.039813709892206580.00067053374200409722.0290.60.314
aebp101.2235715622759596e-099.452808732045422e-142.0240.9710.902
col1a1a00.000140309811219258813.3603245888419524e-072.0080.9140.804
cdh1108.016080342594279e-051.4862942538802744e-071.9970.7860.529
igf2r00.029530332583017990.000419776050314841661.9860.60.314
hyou100.064081370963407260.00141588937697268831.9860.5430.275
LOC11604493700.05351802978906870.00107499132765434651.9820.5860.333
map1ab00.000113498215644220492.5428370315840497e-071.9650.9140.765
ano5b00.034903806425917870.00054200132042718571.9640.5430.235
lman100.056949977672945510.0011791250012630871.9610.5290.255
LOC11605920800.06336988539279110.0013903775843288531.9580.5570.294
magi3a00.0135536118238099440.000150781837347700241.9240.6860.412
LOC11604781600.0103796644629938280.000102641922996230671.920.6710.373
LOC11606758900.00051539861248757972.0306960164451915e-061.9070.7860.608
col5a102.275987904224712e-052.2682736501235572e-081.9010.8860.804
shroom400.032626780695914590.00049151902315384311.8930.60.275
cdk110.0214997373272937076.31172758372343e-053.8970.5770.095
si:ch211-243a20.310.00020224584694941253.12493583049154e-083.6760.8460.274
LOC11604771110.033942518362080660.00013635745942739453.1840.5770.105
pcna10.0030386820823887792.1128042909069076e-063.1310.7310.189
crabp2a10.00016247630012406921.2552248155444158e-083.0130.8460.263
LOC11604735910.012206545738813552.324734560737464e-052.6920.6540.105
clic210.0007329274317259134.5298357955866067e-072.6790.8080.189
ruvbl210.075718797076974670.00045042856728422812.4860.5770.137
LOC11604388110.012206545738813552.2603678721500372e-052.410.8080.463
fosl1a10.047687455136794160.00022841642602605362.3780.6540.221
bub310.096482151317091360.00061121263967873072.1150.6150.2
LOC11604742310.034458767191345110.000149079956946486862.1070.7310.453
si:ch73-1a9.310.00390845869143250253.408820114836903e-062.0410.9230.611
rpa310.0109254154102482251.4348892303323534e-051.9840.8850.526
igfbp5b10.0195865856177239625.4474434659924495e-051.9230.9620.568
phlda310.0193492518067448675.231951585569147e-051.9020.7690.274
LOC11606073410.00031372349361752349.694792757031006e-081.9010.9620.768
LOC11604419110.0131530586714291212.9468379285494786e-051.8160.8460.484
si:dkeyp-72g9.410.0379096108049797250.000175724401135567321.810.8850.484
LOC11605527110.023061611878786247.30474418286647e-051.7920.7310.316
LOC11604899610.0131530586714291212.8661747315550658e-051.780.8850.432
nfixb10.0110848969464751821.5414720722848676e-051.6760.9230.368
LOC11606547110.0043289874681725724.347716091335247e-061.5951.00.821
nfkbiab10.023423085224122377.600197615985318e-051.5830.8460.558
zfp36l210.0522656983794751940.00025842125280333841.5610.8850.516
prmt110.012206545738813552.357568321000763e-051.5430.8850.432
lsm510.003670542309720542.8357094481771787e-061.5350.9230.621
chac110.012206545738813552.166989029966366e-051.5240.9230.516
gcshb10.056430458764650390.000292092145954231751.4970.7690.274
LOC11605400910.000274862436790318076.370421124621093e-081.4911.00.853
tes10.0114407509412614121.6793438495362084e-051.4470.9230.516
LOC11606229910.0300533518903790540.000109586538206071231.4250.8460.705
hmgb2a10.035449352017226350.00015884289377310941.4150.9620.779
LOC11603828410.034204002411073070.000145335300726901951.3950.8460.484
snu13b10.00390845869143250253.623416586618513e-061.3930.9620.705
hk110.082085682655886270.00050098647480029481.3470.8080.505
nop5810.0131530586714291212.6735993070219716e-051.30.9620.716
snrpd110.000466294998582658961.801201323326093e-071.2771.00.811
alas110.0481069938797464850.00023414250729481061.2250.8850.642
LOC11604886410.075718797076974670.00044511496695123891.2250.8850.505
LOC11605631710.023061611878786247.208697729765112e-051.2190.9620.832
snrpf10.0160791945593419184.099300219856948e-051.1970.9230.789
calm2a10.014007506109670643.246486273872985e-051.1890.9620.737
khdrbs1a10.075718797076974670.000439859918961820071.1670.8460.537
hmgb1b10.0553920523558127650.0002781584829363281.1640.8460.558
ptmab10.058376978083959920.000306677573370617631.1350.9620.874
ncl10.0299299544339643280.000104051912046384021.1221.00.758
LOC11604674410.041226127175742740.000194282583260221531.1080.9620.632
h3f3d10.056430458764650390.000288548699844849351.1060.9620.758
LOC11606311410.00063184188994315743.416944707665406e-071.0871.00.968
LOC11606388820.000121494454720316511.8772319950605147e-071.2351.00.917
atp5mc3a20.0009372349348981462.534241557589239e-061.0491.01.0
rplp021.6826990131677115e-051.0450620913863162e-080.9171.01.0
rplp123.202801637229929e-061.2371761577680505e-090.9141.01.0
LOC11603740720.0244318327492803670.0003208754301126130.8780.960.896
rpl3121.236923583497163e-062.866788280664006e-100.8671.01.0
LOC11603401820.058983540417794750.00110730843027843980.8650.880.823
rpl3222.473238675060973e-067.642888365454181e-100.8431.01.0
tomm720.0066516065688814754.933206355165495e-050.8381.00.917
LOC11605428720.0080488435881224596.653478553222367e-050.8371.00.927
ndufa1220.0304138103463203260.00045113192108262540.8351.00.865
LOC11603502320.034011448542765160.00053339957155294550.8210.960.938
rpl2825.086646140598858e-073.929732803305669e-110.7821.01.0
rpl3021.6826990131677115e-051.169985407795844e-080.7761.01.0
txn20.018220899875278090.000215373739255063920.7711.01.0
tma720.05338226770021250.0009663296438471550.7540.960.927
rps2120.00114890347133236723.4616220165298456e-060.721.01.0
btf320.0110770080592227779.670132190143493e-050.7111.00.969
rpl37a20.000233890382579004264.543449860780298e-070.711.01.0
rps1622.744643581866336e-053.1805974758957845e-080.6991.01.0
rps27.120.0046875993707553273.078228882217265e-050.671.01.0
edf120.067187108243404030.00135474623389434880.6660.960.927
rpl7a21.4300311460725007e-056.628698143104917e-090.6641.01.0
rps2820.00054300618641829281.2585124839731754e-060.651.01.0
rpl2320.000121494454720316511.8772319950605147e-070.6381.01.0
rpl3720.0021209964282200999.995425071185573e-060.6361.01.0
rpl720.000233890382579004264.698045385548602e-070.6341.00.99
LOC11604968220.00719521394682693965.5031379846714075e-050.6331.00.99
LOC11606748320.072561117017588940.00149674121165762110.6161.00.99
rpl27a22.075801567440645e-051.6381724356535228e-080.5921.01.0
rpl3820.00144009465974847865.00650955567688e-060.5851.01.0
rpl2626.172273213838218e-058.106353880967994e-080.5841.01.0
rps2920.00174609705142802387.419293713577049e-060.5821.01.0
rps520.003627472448715362.1298509433124796e-050.5741.01.0
rps1320.000128786666559616132.2296874215699007e-070.561.01.0
rps2320.000128786666559616132.3074772945589128e-070.551.01.0
rpl23a20.00012396792471942232.011222511671715e-070.5481.01.0
rps1120.0021447290712652621.0604346458666313e-050.5421.01.0
rpl820.00048094377340331591.003204718934605e-060.5371.01.0
LOC11605877120.0178835171049775420.0002100042181672270.5341.00.99
LOC11605599520.0278222247817620540.000399794021122353350.521.01.0
rps2020.018674133885028540.000226501778426257740.5171.01.0
LOC11603878320.095001133273876410.00226053376455144720.5121.01.0
LOC11605060720.0122332692118217350.000113242371648428150.4981.01.0
rps1220.0066516065688814754.933206355165495e-050.4941.01.0
rps27a20.00141774188860626684.709742058874341e-060.4921.01.0
rps720.0108841422174203319.4176755898569e-050.4881.01.0
rps8a20.0018040993571473358.362636080720031e-060.4751.01.0
uba5220.0175524594242540970.000204760612875646540.4751.01.0
rpl2920.0252173102730240020.000337036053556331330.4711.01.0
Saturation


Left
The plot shows the Sequencing Saturation metric as a function of downsampled sequencing depth in mean reads per cell, up to the observed sequencing depth. Sequencing Saturation is a measure of the observed library complexity, and approaches 1.0 (100%) when all converted mRNA transcripts have been sequenced. The slope of the curve near the endpoint can be interpreted as an upper bound to the benefit to be gained from increasing the sequencing depth beyond this point.
Right
The plot shows the Median Genes per Cell as a function of downsampled sequencing depth in mean reads per cell, up to the observed sequencing depth. The slope of the curve near the endpoint can be interpreted as an upper bound to the benefit to be gained from increasing the sequencing depth beyond this point.