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ABSTRACT

The advent of advanced sequencing technologies
has significantly reduced the cost and increased the
feasibility of assembling high-quality genomes. Yet, the
annotation of genomic elements remains a complex
challenge. Even for species with comprehensively
annotated reference genomes, the functional
assessment of individual genetic variants is not
straightforward. In response to these challenges,
recent breakthroughs in machine learning have led
to the development of DNA language models. These
transformer-based architectures are designed to tackle
a wide array of genomic tasks with enhanced efficiency
and accuracy. In this context, we introduce GENA-
Web, a web-based platform that consolidates a suite
of genome annotation tools powered by DNA language
models. The version of GENA-Web presented here
encompasses a diverse set of models trained on
human data, including the prediction of promoter
activity, annotation of splice sites, determination of
various chromatin features, and a model for scoring
of enhancer activity in Drosophila. GENA-Web is
accessible online at https://dnalm.airi.net/

INTRODUCTION

Understanding the sequence determinants that underpin
the functionality of genomic elements is crucial for
annotating genomes and interpreting genetic variants. While
biochemical approaches to genome analysis can yield direct
information about genome functions, these approaches are
often constrained by the complexity of molecular systems
interacting with nucleic acids. Recently, machine learning-
based approaches have emerged as powerful alternatives,
capable of inferring a wide range of epigenetic and genomic
features from DNA sequences with remarkable accuracy (1, 2,
3). Notably, transformer-based neural networks have emerged
as the leading architecture, delivering unparalleled results in
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the field, as evidenced by various studies and implementations
(1, 2, 4, 5, 6, 7, 8).

The utility of machine learning in genomics is significantly
enhanced by the application of transfer learning, a method
that leverages knowledge gained from one task to improve
performance on another. In the genomic context, this is
typically achieved by initially pre-training a model on a
specific biological task, enabling it to grasp the fundamental
patterns and structures within DNA sequences. After this
foundational learning phase, the model can be fine-tuned to
address a variety of specialized downstream tasks with greater
efficiency (4, 5, 6, 7, 8). Although the pre-training phase may
demand substantial computational resources, the subsequent
fine-tuning process is generally quicker, offering a cost-
efficient approach to applying advanced machine-learning
techniques in genomic research.

The development of pre-trained DNA language models
has seen significant advancements recently, beginning
with the pioneering DNABERT transformer (4). Pre-
trained on the human genome, DNABERT demonstrated
its ability to accurately predict promoter activity, splice
site localization, and transcription factor binding sites after
undergoing task-specific fine-tuning. The promising results
achieved by DNABERT have spurred the rapid development
of transformer-based pre-trained models, leading to the
introduction of BigBird (9), NucleotideTransformer (6),
DNABERT-2 (8), and GENA DNA language models (GENA-
LMs) (7). These newer models have expanded upon the
capabilities of DNABERT, featuring an increased number
of parameters and, crucially, the capacity to process longer
input sequences. This enhancement in handling extended
sequences has proven to be vital for addressing a wide range of
downstream genomic tasks (7). Notably, among the publicly
available transformer-based pre-trained models, GENA-LMs
boast the longest sequence input capability, accommodating
up to 32 kb (7). This extended input range enables GENA-
LMs to surpass DNABERT in nearly all biological tasks,
showcasing the significant impact of input sequence length
on the performance of DNA language models in genomic
research.
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While fine-tuning DNA language models has proven
effective for addressing a variety of biological tasks, there’s a
notable gap in the accessibility of these fine-tuned models for
direct application in downstream tasks. Often, the models fine-
tuned by researchers are not made publicly available, limiting
their utility outside the original research context. Additionally,
even when such models are accessible, their usage frequently
requires advanced programming skills, posing a significant
barrier to their broader adoption in genomic research.
Only a few CNN-based models come with associated web
services, such as humanbase (https://humanbase.io/) which
hosts Sei, DeepSEA, and Beluga to predict alterations
of epigenetic features (10, 11), and the SpliceAI lookup
(https://spliceailookup.broadinstitute.org) predicting splice
site alterations SpliceAI (12). Their application, however, is
confined to annotating .vcf files or short DNA sequences up
to 1 kb. Moreover, they do not offer insights into the sequence
determinants underlying the model’s predictions.

To bridge this gap, we introduce GENA-Web, a web
service designed to offer a user-friendly platform for inferring
sequence-based features using DNA transformer models.
GENA-Web hosts models tailored for annotating promoters,
splice sites, epigenetic features, and enhancer activities, as
well as to highlight sequence determinants that underlying
model prediction.

MATERIAL AND METHODS

Web service implementation
The front-end was implemented on TypeScript using React,
Redux, Eslint, and Npm. To visualize genomic data, we
integrated igv.js (13), ensuring an interactive and intuitive
display of results. On the back-end, implemented using flusk
and python, we structured each model as a separate Docker
container, enabling isolation and scalability. These containers
are designed to accept standardized inputs and provide outputs
in genomic annotation formats, specifically .bed or .bedGraph.
This modular architecture not only facilitates the maintenance
and operation of the current system but also simplifies the
integration of additional models in the future, enhancing the
web server’s versatility and adaptability to evolving research
needs.

Pretraining of DNA Language Models
This study utilizes the pre-trained DNA language models
DNABERT and GENA-LM, as introduced in (4) and (7),
respectively. To ensure the manuscript’s completeness, we
briefly describe the characteristics of these pre-trained models.

DNABERT, which incorporates a vocabulary of
DNA k-mers of length 6, underwent pretraining on
the human hg38 genome assembly. The model is
accessible through its official GitHub repository:
https://github.com/jerryji1993/DNABERT.

The GENA-LMs collection includes models that vary
in architecture, parameter count, and the datasets used for
pre-training. Specifically, all GENA-LMs employed in our
research were pre-trained using the human T2T genome
assembly. For tokenization, GENA-LMs utilize the Byte
Pair Encoding (BPE) strategy, resulting in tokens of varying
lengths with a median of 8 bp.

Both the GENA-LMs and DNABERT models were
subjected to masked language modeling (MLM) during
pretraining. This process involved tokenizing segments of the
human genome sequence, flanking them with CLS and SEP
tokens. In alignment with the BERT pretraining protocol, 15%
of the tokens in each segment were designated for prediction:
80% were masked (replaced by a special ”MASK” token),
10% replaced with random tokens, and 10% left unchanged.
The GENA-LMs underwent pretraining over 1-2 million steps
with a batch size of 256.

Depending on the specific genomic task, we utilized one
of the following GENA-LMs: gena-lm-bert-base-t2t (110M
parameters, employing full attention, with an input length
capacity of 4.5 kb), gena-lm-bert-large-t2t (336M parameters,
also using full attention, with the same input length limit), or
gena-lm-bigbird-base-sparse-t2t (110M parameters, utilizing
sparse attention, and capable of processing inputs up to 36 kb).

Fine-tuning process
Each task featured on the web server was developed through
the process of fine-tuning, utilizing one of two publicly
available pre-trained DNA language models: DNABERT (4)
or GENA-LMs (7), as detailed in Supplementary Table 1. For
the DNABERT model, we always use the DNABERT6 model.
The optimal GENA-LM for each specific task was selected
based on performance metrics reported in (7). Supplementary
Table 1 provides detailed information regarding the specific
pre-trained model deployed for each downstream task, along
with the performance scores achieved during the fine-tuning
phase.

For splice sites annotation using the DNABERT model, we
obtained very low performance scores (f1 score near 0.5).
Therefore, this model was not included in the service.For
promoter activity prediction, we used EPDnew-derived
promoter sequences as positive samples set and random
genomic sequences non-overlapping promoters as a negative
samples set. For other tasks, we used original datasets
provided by authors (10, 12, 14).

In the fine-tuning process of GENA-LM models, we start by
tokenizing input sequences and adding CLS and SEP tokens at
the beginning and end, respectively. Sequences are adjusted to
fit model requirements through padding or truncation. These
tokenized sequences feed into models built on the pre-trained
GENA-LM architecture, which includes an additional fully-
connected output layer sized according to the hidden units of
the model and the specific target task.

For classification tasks, we use a softmax function for
single-label tasks and a sigmoid function for multi-label tasks,
along with appropriate loss functions: cross-entropy for the
former and binary cross-entropy with logits for the latter.
Regression tasks use mean squared error as the loss function
without an activation function on the output layer. The hidden
states of CLS tokens is used for sequence classification and
regression, while all hidden states are utilized for token-level
classification, like splice site prediction.

Both the weights of the final layer and the overall GENA-
LM parameters were fine-tuned, with a learning rate warm-up
applied. The ideal number of training and warm-up steps is
empirically determined for each task.
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In the fine-tuning process of the DNABERT model, minor
modifications were made to the original source code to
suit our tasks. The tokenization process utilized the model’s
default tokenizer, which divides the sequence into tokens,
each representing a k-mer of fixed length 6. While the default
fine-tuning parameters were largely retained, adjustments
were made to the learning rate and batch size to improve
convergence. The dimensionality of the final fully-connected
layer of the model was tailored to the demands of the given
task, employing the same types of loss functions as those used
with the GENA-LM models. This process involved the fine-
tuning of both the weights of the final layer and the main body
of the DNABERT model with no parameters being frozen.

Long input processing
When the input sequence surpasses the model’s maximum
input capacity, we divide the input into smaller, manageable
chunks and independently compute predictions for each
segment. Recognizing the significance of contextual
information for precise predictions, our strategy involves
employing overlapping chunks. This approach ensures that
predictions are derived from the segment where the region
of interest has the maximal contextual information. We
employed this overlapping chunk methodology for tasks
that, during training, were provided with extensive (>=1000
bp) contextual information, such as chromatin annotation
and splice site prediction. Conversely, for tasks where the
contextual information during training was less extensive, we
opted for non-overlapping chunks to increase computational
efficiency. In all cases, collected predictions for all chunks are
concatenated together into a single output file.

Computation of Input Token Attribution Scores
Token attributions scores are calculated using the Layer
Integrated Gradients method (15) implemented in the
‘captum‘ library (16).

RESULTS

Overview of the GENA-Web service
Input Requirements Users are prompted to provide the
DNA sequence, select the desired model, and specify the
task to be performed by the web service (Fig. 1, A).
Presently, the service offers four distinct tasks for selection:
promoter activity prediction, splice site annotation, prediction
of epigenetic features, and enhancer activity assessment.
Detailed descriptions of each task are provided in subsequent
sections.

The DNA sequence can be input directly into the designated
field on the homepage or uploaded as a FASTA file. The
input sequence length is currently limited to 1 megabase (Mb).
Model and task selection are enabled by dropdown menus on
the homepage.

Output The service generates DNA annotations as specified
by the user, offering outputs both as downloadable files
(using .bed format for qualitative features and .bedGraph for
quantitative annotations) and through an interactive genome
browser display (Fig. 1, B). Additionally, it provides insights

into how specific elements of the input sequence influence the
annotations. This analysis is conducted using the Integrated
Gradients method (15), which assigns an ”importance” score
to each sequence token, highlighting its contribution to the
feature annotation.

Users can view these token importance scores by clicking
on a feature in the genome browser, which then displays
the corresponding scores track. A high token importance
score suggests that alterations to that token could significantly
impact the annotated feature. The tokens have lengths of 6
bp for DNABERT and approximately 8 bp for GENA-LMs,
allowing for a detailed examination of the sequence elements
critical to the identified features.

Tasks Available in GENA-Web Service
GENA-Web currently offers four distinct tasks.

Promoter Prediction This task identifies potential promoter
regions within the input sequence, providing a binary (yes/no)
indication for segments of 300 bp in length. Given its training
on human promoter sequences, its applicability might be
limited to human or closely related mammalian genomes.

Splice Site Annotation It involves classifying each sequence
token based on its likelihood of representing a splice donor
(SD) or acceptor (SA) site, with separate tracks for each.
While trained on human data, we observed that this model
demonstrates a capacity to identify splice site motifs across
species, including distantly related organisms like Drosophila.

Epigenetic Profiling This task offers predictions on DNA
accessibility, histone modifications, and transcription factor
bindings across various human cell lines, encompassing over
900 targers organized into several tracks for user convenience.
Each reported target presents specific combination of cell type
and epigenetic feature. For some cell types, predictions under
treatment condition are also available. For example, the target
named K562 |CTCF| None reflects CTCF transcription factors
binding in the untreated K562 human cells. More details about
targets can be found in (10).

Enhancer Activity Annotation Using outputs of the model
trained on Drosophila cell reporter assays (14), this task
evaluates the sequence’s potential to enhance the activity of
housekeeping and developmental gene promoters, presented
in two distinct tracks.

Case Study I: Deciphering chimeric transcript structure
with splice site prediction
In a recent study, we reported a complex structural variant
(SV) on chromosome 9 (9p24) segregating across five
generations within a family affected by congenital heart
defects (Fig 2, A) (17). Detailed genomic analyses unraveled
a chimeric gene formation, integrating the 5’ segment of
the KANK1 transcript with an intergenic segment located
between KANK1 and DKK1, and extending into the DKK1
gene (Fig 2, A). Given the evidence of KANK1 role in
cardiomyocyte differentiation (18, 19), the emergence of this
chimeric transcript, incorporating elements of KANK1, could
potentially exhibit gain-of-function activity, contributing to
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Figure 1. Input and output views of the GENA-Web service. A. Input screen. B. Example of service output page with IGV view and link to files download

the observed cardiac phenotype. However, the chimeric
structure also encompasses an intergenic region, leaving it
devoid of splice site annotations. This lack of information
hindered the reconstruction of the mature mRNA sequence.
Although KANK1 is highly expressed in cardiac tissues, its
minimal expression in blood made it challenging to directly
study the transcript structure using RNA from the patient’s
blood cells.

To explore potential splice sites within the chimeric region,
we employed GENA-Web-based splice sites annotation. This
investigation identified two pairs of splice donor and acceptor
sites within the intergenic segment, indicating the possible
formation of two exons (illustrated in Fig.2, A for the whole
transcript structure, and zoomed in Fig.2, B and C for
the individual exons). The first exon (Fig.2, B) maintains
the KANK1 reading frame without introducing stop codons.
However, the subsequent exon, spanning 48 nucleotides as
shown in Fig. 2, C, introduces a stop codon within the
KANK1 reading frame. Consequently, this chimeric transcript
likely contains a premature termination codon, subjecting it to
nonsense-mediated RNA decay. Given that KANK1 is not the
haploinsufficient gene, these findings suggest that the KANK1-
DKK1 chimeric transcript does not play a direct role in the
familial heart condition observed.

Case Study II: Studying evolution of splice sites
determinants
Further evaluating the capabilities of our GENA-LM web
service, we tested the task of splice site annotation across
different species. This examination focused on the service’s
accuracy in identifying donor and acceptor sites within the
genomes of human, mice, zebrafish, and fruit fly using the
model fine-tunned exclusively on human data. Given this
model’s training background, its effectiveness in identifying
splice sites in non-human species depends on the conservation
of sequence determinants for splice donor and acceptor sites
across these organisms.

To conduct this assessment, we sourced random gene
sequences from the positive strand of each genome via
the UCSC genome browser. These sequences were then
processed through the GENA-LM web service to gather donor
and acceptor sites. A prediction was considered accurate if
the actual splice site was encompassed within the bounds
of the predicted token’s range, emphasizing the model’s
ability to pinpoint splice sites within a specified genomic

interval. Our results (Fig. 3) demonstrated a high degree of
accuracy in predicting donor and acceptor sites within human
genes, achieving rates of 93% and 88%, respectively. The
performance on the mouse and zebrafish genomes also yielded
robust results, with donor site predictions achieving accuracies
of 81% and 86%, and acceptor site predictions reaching
86% and 76%, respectively. However, the accuracy dropped
when assessing the fruit fly genome, with only 54% accuracy
for donor sites and 61% for acceptor sites. Nevertheless,
Importantly, the accuracy rates observed for all species were
markedly higher than those seen in a control scenario, wherein
predictions from GENA-LMs were replaced with genomic
sites selected at random. Such random selection resulted in an
accuracy rate approaching 0%, with a p-value negligible when
compared to the accuracy achieved by GENA-LM predictions.
This toy example shows that there are elements of splice site
grammar conserved among a range of animal taxa, aligning
with findings previously documented in the literature (20).

CONCLUSIONS AND FUTURE PERSPECTIVES

GENA-Web introduces a novel web service dedicated to
annotating genomic data, capable of inferring approximately
1000 features directly from DNA sequences. Its capacity to
process inputs up to 1 Mb in length enables comprehensive
analyses and integrates seamlessly with models designed to
leverage extensive contextual information (7). Despite the
broad utility of GENA-Web, it’s important to note that a
significant portion of its outputs pertains to chromatin states,
primarily based on models trained with human data. Looking
ahead, expanding GENA-Web’s functionality through the
integration of new models and tasks will be a key area for
development, enhancing its applicability across a wider range
of genomic research areas.

DATA AVAILABILITY

Source code is available on GitHub: https:
//github.com/AIRI-Institute/GENA_
Web_service,https://github.com/
AIRI-Institute/GENA_Web_docker. The models
are available on HuggingFace (with references specified in
Supplementary Table 1)

https://github.com/AIRI-Institute/GENA_Web_service
https://github.com/AIRI-Institute/GENA_Web_service
https://github.com/AIRI-Institute/GENA_Web_service
 https://github.com/AIRI-Institute/GENA_Web_docker
 https://github.com/AIRI-Institute/GENA_Web_docker
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Figure 2. Inferring chimeric transcript structure using GENA-Web. A. The structure of KANK1-DKK1 loci showing the deleted region and Splice Acceptor
(SA) and Splice Donor (SD) sites predicted using GENA-Web (Splice Sites Annotation with GENA-LM task). B and C. Structure of exons predicted within the
intergenic region. Exon boundaries are shown by vertical lines
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Figure 3. Cross-species inference of splice sites using a model trained on human data. Annotations of splice sites generated by GENA-Web are presented
alongside screenshots from the UCSC Genome Browser. The species analyzed include A. Homo sapiens B. Mus musculus C. Danio Rerio D. Drosophila
Melanogaster. SD - splice donor, SA - splice acceptor
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